The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death

Cell Res. 2009 Dec;19(12):1377-87. doi: 10.1038/cr.2009.117. Epub 2009 Oct 6.

Abstract

Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsis paraquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence / genetics
  • Arabidopsis / enzymology*
  • Arabidopsis / genetics*
  • Arabidopsis Proteins / genetics*
  • Arabidopsis Proteins / metabolism*
  • Cell Death / genetics
  • Gene Expression Regulation, Enzymologic / genetics
  • Gene Expression Regulation, Plant / genetics
  • Glutathione Reductase / genetics*
  • Glutathione Reductase / metabolism*
  • Glycine / genetics
  • Herbicides / pharmacology
  • Mutation, Missense / genetics
  • Nitric Oxide / metabolism
  • Nitric Oxide Donors / pharmacology
  • Paraquat / pharmacology

Substances

  • Arabidopsis Proteins
  • Herbicides
  • Nitric Oxide Donors
  • Nitric Oxide
  • Glutathione Reductase
  • S-nitrosoglutathione reductase, Arabidopsis
  • Paraquat
  • Glycine