Understanding and using quantitative genetic variation

Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):73-85. doi: 10.1098/rstb.2009.0203.

Abstract

Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet.

MeSH terms

  • Animals
  • Breeding
  • Genetic Variation*
  • Models, Genetic*
  • Models, Statistical
  • Phenotype
  • Quantitative Trait Loci*