A genome-wide association study identifies multiple loci associated with mathematics ability and disability

Genes Brain Behav. 2010 Mar 1;9(2):234-47. doi: 10.1111/j.1601-183X.2009.00553.x. Epub 2009 Nov 10.

Abstract

Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P < 0.05) in an individually genotyped sample of (*)2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e-14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e-07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Chromosome Mapping*
  • Curriculum
  • DNA / genetics
  • Genome, Human
  • Genome-Wide Association Study*
  • Genotype
  • Humans
  • Internet
  • Learning / physiology
  • Learning Disabilities / genetics*
  • Likelihood Functions
  • Mathematics*
  • Oligonucleotide Array Sequence Analysis
  • Phenotype
  • Polymorphism, Single Nucleotide*
  • Quantitative Trait Loci / genetics*

Substances

  • DNA