Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta

Placenta. 2010 Mar;31 Suppl(Suppl):S66-9. doi: 10.1016/j.placenta.2009.12.021. Epub 2010 Jan 27.

Abstract

The placenta regulates fetal growth and development via transport of nutrients and gases, and synthesis and secretion of steroid and peptide hormones. These functions are determined by vascular development and blood flow and by growth and differentiation of the trophoblast, which contains receptors, transporters and enzymes. The placenta generates reactive oxygen species which may contribute to the oxidative stress seen even in normal pregnancy but this is increased in pregnancies complicated by preeclampsia, IUGR and pregestational diabetes where oxidative and nitrative stress have been clearly documented. Nitrative stress is the covalent modification of proteins and DNA by peroxynitrite formed by the interaction of superoxide and nitric oxide. We have demonstrated nitrative stress by localizing nitrotyrosine residues in these placentas and found increased expression of NADPH oxidase (NOX) enzyme isoforms 1 and 5 as a potential source of superoxide generation. The presence of nitrative stress was associated with diminished vascular reactivity of the fetal placental circulation, a situation that could be reproduced by treatment with peroxynitrite in vitro. We find many nitrated proteins in the placenta, including p38 MAP kinase which has a role in development of the villous vasculature. Nitration of p38 MAPK was increased in the preeclamptic placenta and associated with loss of catalytic activity. We hypothesize that nitration of proteins in the placenta including receptors, transporters, enzymes and structural proteins can alter protein and placental function and this influences fetal growth and development. Increasing nitrative stress but a decrease in oxidative stress, measured as protein carbonylation, is found in the placenta with increasing BMI. Formation of peroxynitrite may then consume superoxide, decreasing nitrative stress. As protein carbonylation is a covalent modification at Lys, Arg, Pro and Thr residues the switch from carbonylation to nitration at tyrosine residues may alter protein function and hence placental function.

Publication types

  • Review

MeSH terms

  • Animals
  • Female
  • Humans
  • Maternal-Fetal Exchange
  • Oxidation-Reduction
  • Oxidative Stress
  • Placenta / metabolism*
  • Pre-Eclampsia / etiology
  • Pre-Eclampsia / metabolism
  • Pregnancy
  • Reactive Nitrogen Species / metabolism*
  • Reactive Oxygen Species / metabolism*

Substances

  • Reactive Nitrogen Species
  • Reactive Oxygen Species