Chaperone-assisted degradation: multiple paths to destruction

Biol Chem. 2010 May;391(5):481-9. doi: 10.1515/BC.2010.058.

Abstract

Molecular chaperones are well known as facilitators of protein folding and assembly. However, in recent years multiple chaperone-assisted degradation pathways have also emerged, including CAP (chaperone-assisted proteasomal degradation), CASA (chaperone-assisted selective autophagy), and CMA (chaperone-mediated autophagy). Within these pathways chaperones facilitate the sorting of non-native proteins to the proteasome and the lysosomal compartment for disposal. Impairment of these pathways contributes to the development of cancer, myopathies, and neurodegenerative diseases. Chaperone-assisted degradation thus represents an essential aspect of cellular proteostasis, and its pharmacological modulation holds the promise to ameliorate some of the most devastating diseases of our time. Here, we discuss recent insights into molecular mechanisms underlying chaperone-assisted degradation in mammalian cells and highlight its biomedical relevance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autophagy / physiology
  • HSC70 Heat-Shock Proteins / metabolism
  • HSP70 Heat-Shock Proteins / metabolism
  • Humans
  • Lysosomal-Associated Membrane Protein 2 / metabolism
  • Lysosomes / metabolism
  • Molecular Chaperones / metabolism*
  • Proteasome Endopeptidase Complex / metabolism
  • Protein Folding
  • Proteins / metabolism*
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • HSC70 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Lysosomal-Associated Membrane Protein 2
  • Molecular Chaperones
  • Proteins
  • Ubiquitin-Protein Ligases
  • Proteasome Endopeptidase Complex