Spatially restricting gene expression by local translation at synapses

Trends Neurosci. 2010 Apr;33(4):173-82. doi: 10.1016/j.tins.2010.01.005. Epub 2010 Mar 19.

Abstract

mRNA localization and regulated translation provide a means of spatially restricting gene expression within each of the thousands of subcellular compartments made by a neuron, thereby vastly increasing the computational capacity of the brain. Recent studies reveal that local translation is regulated by stimuli that trigger neurite outgrowth and/or collapse, axon guidance, synapse formation, pruning, activity-dependent synaptic plasticity, and injury-induced axonal regeneration. Impairments in the local regulation of translation result in aberrant signaling, physiology and morphology of neurons, and are linked to neurological disorders. This review highlights current advances in understanding how mRNA translation is repressed during transport and how local translation is activated by stimuli. We address the function of local translation in the context of fragile X mental retardation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Gene Expression / genetics*
  • Gene Silencing / physiology
  • Humans
  • Neuronal Plasticity / genetics
  • Neurons / physiology
  • Protein Biosynthesis / genetics*
  • RNA, Messenger / genetics
  • Synapses / genetics*

Substances

  • RNA, Messenger