Transverse relaxometry with stimulated echo compensation

Magn Reson Med. 2010 Oct;64(4):1005-14. doi: 10.1002/mrm.22487.

Abstract

Presented is a fitting model for transverse relaxometry data acquired with the multiple-refocused spin-echo sequence. The proposed model, requiring no additional data input or pulse sequence modifications, compensates for imperfections in the transmit field and radiofrequency (RF) profiles. Exploiting oscillatory echo behavior to estimate alternate coherence pathways, the model compensates for prolonged signal decay from stimulated echo pathways yielding precise monoexponential T(2) quantification. Verified numerically and experimentally at 4.7 T in phantoms and the human brain, over 95% accuracy is readily attainable in realistic imaging situations without sacrificing multislice capabilities or requiring composite or adiabatic RF pulses. The proposed model allows T(2) quantitation in heterogeneous transmit fields and permits thin refocusing widths for efficient multislice imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artifacts*
  • Brain / anatomy & histology*
  • Echo-Planar Imaging / methods*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity