Nrg1/ErbB signaling networks in Schwann cell development and myelination

Semin Cell Dev Biol. 2010 Dec;21(9):922-8. doi: 10.1016/j.semcdb.2010.08.008. Epub 2010 Sep 9.

Abstract

Neuregulin-1 (Nrg1) provides a key axonal signal that regulates Schwann cell proliferation, migration and myelination through binding to ErbB2/3 receptors. The analysis of a number of genetic models has unmasked fundamental mechanisms underlying the specificity of the Nrg1/ErbB signaling axis. Differential expression of Nrg1 isoforms, Nrg1 processing, and ErbB receptor localization and trafficking represent important regulatory themes in the control of Nrg1/ErbB function. Nrg1 binding to ErbB2/3 receptors results in the activation of intracellular signal transduction pathways that initiate changes in Schwann cell behavior. Here, we review data that has defined the role of key Nrg1/ErbB signaling components like Shp2, ERK1/2, FAK, Rac1/Cdc42 and calcineurin in development of the Schwann cell lineage in vivo. Many of these regulators receive converging signals from other cues that are provided by Notch, integrin or G-protein coupled receptors. Signaling by multiple extracellular factors may act as key modifiers and allow Schwann cells at different developmental stages to respond in distinct manners to the Nrg1/ErbB signal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • ErbB Receptors / metabolism*
  • Humans
  • Myelin Sheath / metabolism*
  • Neuregulin-1 / metabolism*
  • Neurogenesis
  • Schwann Cells / metabolism*
  • Signal Transduction*

Substances

  • Neuregulin-1
  • EGFR protein, human
  • ErbB Receptors