PIFs: pivotal components in a cellular signaling hub

Trends Plant Sci. 2011 Jan;16(1):19-28. doi: 10.1016/j.tplants.2010.08.003. Epub 2010 Sep 20.

Abstract

A small subset of basic helix-loop-helix transcription factors called PIFs (phytochrome-interacting factors) act to repress seed germination, promote seedling skotomorphogenesis and promote shade-avoidance through regulated expression of over a thousand genes. Light-activated phytochrome molecules directly reverse these activities by inducing rapid degradation of the PIF proteins. Here, we review recent advances in dissecting this signaling pathway and examine emerging evidence that indicates that other pathways also converge to regulate PIF activity, including the gibberellin pathway, the circadian clock and high temperature. Thus PIFs have broader roles than previously appreciated, functioning as a cellular signaling hub that integrates multiple signals to orchestrate regulation of the transcriptional network that drives multiple facets of downstream morphogenesis. The relative contributions of the individual PIFs to this spectrum of regulatory functions ranges from quantitatively redundant to qualitatively distinct.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Circadian Rhythm
  • Gibberellins / metabolism
  • Phytochrome / metabolism*
  • Signal Transduction*
  • Temperature

Substances

  • Arabidopsis Proteins
  • Basic Helix-Loop-Helix Transcription Factors
  • Gibberellins
  • Phytochrome