Multichromatic control of gene expression in Escherichia coli

J Mol Biol. 2011 Jan 14;405(2):315-24. doi: 10.1016/j.jmb.2010.10.038. Epub 2010 Oct 28.

Abstract

Light is a powerful tool for manipulating living cells because it can be applied with high resolution across space and over time. We previously constructed a red light-sensitive Escherichia coli transcription system based on a chimera between the red/far-red switchable cyanobacterial phytochrome Cph1 and the E. coli EnvZ/OmpR two-component signaling pathway. Here, we report the development of a green light-inducible transcription system in E. coli based on a recently discovered green/red photoswitchable two-component system from cyanobacteria. We demonstrate that the transcriptional output is proportional to the intensity of green light applied and that the green sensor is orthogonal to the red sensor at intensities of 532-nm light less than 0.01 W/m(2). Expression of both sensors in a single cell allows two-color optical control of transcription both in batch culture and in patterns across a lawn of engineered cells. Because each sensor functions as a photoreversible switch, this system should allow the spatial and temporal control of the expression of multiple genes through different combinations of light wavelengths. This feature aids precision single-cell and population-level studies in systems and synthetic biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cyanobacteria / genetics
  • Escherichia coli / genetics*
  • Escherichia coli / radiation effects
  • Gene Expression Regulation, Bacterial / physiology*
  • Genes, Reporter
  • Light*
  • Phytochrome / metabolism*
  • Signal Transduction
  • Transcriptional Activation / radiation effects

Substances

  • Phytochrome