Scaffolding pre-assembled contigs using SSPACE

Bioinformatics. 2011 Feb 15;27(4):578-9. doi: 10.1093/bioinformatics/btq683. Epub 2010 Dec 12.

Abstract

De novo assembly tools play a main role in reconstructing genomes from next-generation sequencing (NGS) data and usually yield a number of contigs. Using paired-read sequencing data it is possible to assess the order, distance and orientation of contigs and combine them into so-called scaffolds. Although the latter process is a crucial step in finishing genomes, scaffolding algorithms are often built-in functions in de novo assembly tools and cannot be independently controlled. We here present a new tool, called SSPACE, which is a stand-alone scaffolder of pre-assembled contigs using paired-read data. Main features are: a short runtime, multiple library input of paired-end and/or mate pair datasets and possible contig extension with unmapped sequence reads. SSPACE shows promising results on both prokaryote and eukaryote genomic testsets where the amount of initial contigs was reduced by at least 75%.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Contig Mapping*
  • Gene Library
  • Genome
  • Genomics / methods*
  • Sequence Analysis, DNA / methods*
  • Software*