Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041914. doi: 10.1103/PhysRevE.82.041914. Epub 2010 Oct 20.

Abstract

We examine the capability of mean square displacement (MSD) analysis to extract reliable values of the diffusion coefficient D of a single particle undergoing Brownian motion in an isotropic medium in the presence of localization uncertainty. The theoretical results, supported by simulations, show that a simple unweighted least-squares fit of the MSD curve can provide the best estimate of D provided an optimal number of MSD points are used for the fit. We discuss the practical implications of these results for data analysis in single-particle tracking experiments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Models, Theoretical*
  • Motion*
  • Uncertainty