A simple DNA gate motif for synthesizing large-scale circuits

J R Soc Interface. 2011 Sep 7;8(62):1281-97. doi: 10.1098/rsif.2010.0729. Epub 2011 Feb 4.

Abstract

The prospects of programming molecular systems to perform complex autonomous tasks have motivated research into the design of synthetic biochemical circuits. Of particular interest to us are cell-free nucleic acid systems that exploit non-covalent hybridization and strand displacement reactions to create cascades that implement digital and analogue circuits. To date, circuits involving at most tens of gates have been demonstrated experimentally. Here, we propose a simple DNA gate architecture that appears suitable for practical synthesis of large-scale circuits involving possibly thousands of gates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computers, Molecular*
  • DNA / chemistry*
  • Nucleic Acid Conformation

Substances

  • DNA