Electroporation delivery of DNA vaccines: prospects for success

Curr Opin Immunol. 2011 Jun;23(3):421-9. doi: 10.1016/j.coi.2011.03.008. Epub 2011 Apr 27.

Abstract

A number of noteworthy technology advances in DNA vaccines research and development over the past few years have led to the resurgence of this field as a viable vaccine modality. Notably, these include--optimization of DNA constructs; development of new DNA manufacturing processes and formulations; augmentation of immune responses with novel encoded molecular adjuvants; and the improvement in new in vivo delivery strategies including electroporation (EP). Of these, EP mediated delivery has generated considerable enthusiasm and appears to have had a great impact in vaccine immunogenicity and efficacy by increasing antigen delivery upto a 1000 fold over naked DNA delivery alone. This increased delivery has resulted in an improved in vivo immune response magnitude as well as response rates relative to DNA delivery by direct injection alone. Indeed the immune responses and protection from pathogen challenge observed following DNA administration via EP in many cases are comparable or superior to other well studied vaccine platforms including viral vectors and live/attenuated/inactivated virus vaccines. Significantly, the early promise of EP delivery shown in numerous pre-clinical animal models of many different infectious diseases and cancer are now translating into equally enhanced immune responses in human clinical trials making the prospects for this vaccine approach to impact diverse disease targets tangible.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Clinical Trials as Topic
  • Electroporation / instrumentation
  • Electroporation / methods*
  • Gene Expression Regulation
  • Humans
  • Immune Tolerance
  • Vaccines, DNA / administration & dosage*
  • Vaccines, DNA / adverse effects
  • Vaccines, DNA / genetics
  • Vaccines, DNA / immunology

Substances

  • Vaccines, DNA