Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi

PLoS One. 2011;6(9):e24152. doi: 10.1371/journal.pone.0024152. Epub 2011 Sep 8.

Abstract

The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Bayes Theorem
  • Benzamides / pharmacology
  • Ctenophora / classification
  • Ctenophora / embryology
  • Ctenophora / genetics*
  • Dioxoles / pharmacology
  • Embryo, Nonmammalian / drug effects
  • Embryo, Nonmammalian / embryology
  • Embryo, Nonmammalian / metabolism
  • Evolution, Molecular*
  • Gene Expression Profiling
  • Gene Expression Regulation, Developmental
  • In Situ Hybridization
  • Molecular Sequence Data
  • Phylogeny
  • Receptors, Transforming Growth Factor beta / antagonists & inhibitors
  • Receptors, Transforming Growth Factor beta / genetics
  • Sequence Homology, Amino Acid
  • Signal Transduction / drug effects
  • Signal Transduction / genetics*
  • Smad Proteins / genetics
  • Transforming Growth Factor beta / classification
  • Transforming Growth Factor beta / genetics*

Substances

  • 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide
  • Benzamides
  • Dioxoles
  • Receptors, Transforming Growth Factor beta
  • Smad Proteins
  • Transforming Growth Factor beta

Associated data

  • GENBANK/JN380180
  • GENBANK/JN380181
  • GENBANK/JN380182
  • GENBANK/JN380183
  • GENBANK/JN380184
  • GENBANK/JN380185
  • GENBANK/JN380186
  • GENBANK/JN380187
  • GENBANK/JN380188
  • GENBANK/JN380189
  • GENBANK/JN380190
  • GENBANK/JN380191
  • GENBANK/JN380192
  • GENBANK/JN380193
  • GENBANK/JN380194
  • GENBANK/JN380195
  • GENBANK/JN380196
  • GENBANK/JN380197
  • GENBANK/JN380198
  • GENBANK/JN380199