The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones

Biochim Biophys Acta. 2012 Mar;1823(3):624-35. doi: 10.1016/j.bbamcr.2011.09.003. Epub 2011 Sep 16.

Abstract

Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).

Publication types

  • Review

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Binding Sites
  • HSP90 Heat-Shock Proteins / chemistry*
  • HSP90 Heat-Shock Proteins / genetics
  • HSP90 Heat-Shock Proteins / metabolism*
  • Humans
  • Models, Molecular
  • Molecular Chaperones / chemistry*
  • Molecular Chaperones / genetics
  • Molecular Chaperones / metabolism*
  • Protein Binding
  • Protein Conformation

Substances

  • HSP90 Heat-Shock Proteins
  • Molecular Chaperones
  • Adenosine Triphosphate