Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio)

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jan;198(1):11-24. doi: 10.1007/s00359-011-0682-1. Epub 2011 Oct 8.

Abstract

In fishes, the C-start behavior, initiated with a C-shaped body bend, is a taxonomically common and widely studied escape response. Its simple neural circuit has made this behavior a model for examining neural control of movement. The S-start, initiated with an S-shaped body bend, is a physiologically distinct escape that occurs in esocid fishes. Here we examine whether zebrafish larvae perform S-starts in order to better understand startle diversity and to attempt to identify the S-start in a system that is tractable for neurobiological studies. We found that larval zebrafish startles varied in the extent of their caudal bending, resulting in C, S and intermediate-shaped responses. We recorded two distinct motor patterns: nearly simultaneous initial activity along one side of the body, characteristic of C-starts, and nearly simultaneous activity rostrally on one side and caudally on the other, characteristic of S-starts. Head stimulation generally elicited C-starts while tail stimulation elicited C- and S-starts. These results demonstrate that the S-start is more common than previously documented and occurs in early developmental stages. We suggest that the S-start may be a fundamental escape behavior in fishes and may provide a comparative model to the C-start for understanding simple neural circuits.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Electric Stimulation / methods
  • Larva
  • Motor Activity / physiology*
  • Nerve Net / physiology
  • Physical Stimulation / methods
  • Reflex, Startle / physiology*
  • Swimming / physiology*
  • Zebrafish / physiology*