Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up

Radiographics. 2011 Oct;31(6):1773-91. doi: 10.1148/rg.316115515.

Abstract

Diffusion-weighted imaging relies on the detection of the random microscopic motion of free water molecules known as Brownian movement. With the development of new magnetic resonance (MR) imaging technologies and stronger diffusion gradients, recent applications of diffusion-weighted imaging in whole-body imaging have attracted considerable attention, especially in the field of oncology. Diffusion-weighted imaging is being established as a pivotal aspect of MR imaging in the evaluation of specific organs, including the breast, liver, kidney, and those in the pelvis. When used in conjunction with apparent diffusion coefficient mapping, diffusion-weighted imaging provides information about the functional environment of water in tissues, thereby augmenting the morphologic information provided by conventional MR imaging. Detected changes include shifts of water from extracellular to intracellular spaces, restriction of cellular membrane permeability, increased cellular density, and disruption of cellular membrane depolarization. These findings are commonly associated with malignancies; therefore, diffusion-weighted imaging has many applications in oncologic imaging and can aid in tumor detection and characterization and in the prediction and assessment of response to therapy.

Publication types

  • Review

MeSH terms

  • Artifacts
  • Contrast Media
  • Diffusion Magnetic Resonance Imaging / methods*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted
  • Neoplasm Staging
  • Neoplasms / diagnosis*
  • Neoplasms / pathology
  • Neoplasms / therapy
  • Predictive Value of Tests
  • Whole Body Imaging

Substances

  • Contrast Media