Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing

Dev Cell. 2011 Nov 15;21(5):948-58. doi: 10.1016/j.devcel.2011.07.011. Epub 2011 Oct 20.

Abstract

During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C. elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics*
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism*
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Chromosome Pairing / genetics*
  • Cytoskeleton / genetics*
  • Cytoskeleton / metabolism
  • Meiosis / genetics*
  • Nuclear Envelope / genetics
  • Nuclear Envelope / metabolism
  • Polo-Like Kinase 1
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*

Substances

  • Caenorhabditis elegans Proteins
  • Cell Cycle Proteins
  • Proto-Oncogene Proteins
  • Protein Serine-Threonine Kinases
  • polo-like kinase 2, C elegans