Spatial attention modulates early face processing

Neuropsychologia. 2012 Dec;50(14):3461-8. doi: 10.1016/j.neuropsychologia.2012.09.031. Epub 2012 Sep 25.

Abstract

It is widely reported that inverting a face dramatically affects its recognition. Previous studies have shown that face inversion increases the amplitude and delays the latency of the face-specific N170 component of the event-related potential (ERP) and also enhances the amplitude of the occipital P1 component (latency 100-132 ms). The present study investigates whether these effects of face inversion can be modulated by visual spatial attention. Participants viewed two streams of visual stimuli, one to the left and one to the right of fixation. One stream consisted of a sequence of alphanumeric characters at 6.67 Hz, and the other stream consisted of a series of upright and inverted images of faces and houses presented in randomized order. The participants' task was to attend selectively to one or the other of the streams (during different blocks) in order to detect infrequent target stimuli. ERPs elicited by inverted faces showed larger P1 amplitudes compared to upright faces, but only when the faces were attended. In contrast, the N170 amplitude was larger to inverted than to upright faces only when the faces were not attended. The N170 peak latency was delayed to inverted faces regardless of attention condition. These inversion effects were face specific, as similar effects were absent for houses. These results suggest that early stages of face-specific processing can be enhanced by attention, but when faces are not attended the onset of face-specific processing is delayed until the latency range of the N170.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Attention / physiology*
  • Brain Mapping
  • Electroencephalography
  • Evoked Potentials / physiology*
  • Face*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Reaction Time / physiology
  • Space Perception / physiology*
  • Young Adult