Neural dynamics and circuit mechanisms of decision-making

Curr Opin Neurobiol. 2012 Dec;22(6):1039-46. doi: 10.1016/j.conb.2012.08.006. Epub 2012 Sep 28.

Abstract

In this review, I briefly summarize current neurobiological studies of decision-making that bear on two general themes. The first focuses on the nature of neural representation and dynamics in a decision circuit. Experimental and computational results suggest that ramping-to-threshold in the temporal domain and trajectory of population activity in the state space represent a duality of perspectives on a decision process. Moreover, a decision circuit can display several different dynamical regimes, such as the ramping mode and the jumping mode with distinct defining properties. The second is concerned with the relationship between biologically-based mechanistic models and normative-type models. A fruitful interplay between experiments and these models at different levels of abstraction have enabled investigators to pose increasingly refined questions and gain new insights into the neural basis of decision-making. In particular, recent work on multi-alternative decisions suggests that deviations from rational models of choice behavior can be explained by established neural mechanisms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain / physiology*
  • Choice Behavior / physiology*
  • Decision Making / physiology*
  • Humans
  • Models, Neurological*
  • Nerve Net / physiology*
  • Primates