Microbial manipulation of the amyloid fold

Res Microbiol. 2012 Nov-Dec;163(9-10):592-606. doi: 10.1016/j.resmic.2012.10.009. Epub 2012 Oct 27.

Abstract

Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amyloid / chemistry
  • Amyloid / metabolism*
  • Bacterial Physiological Phenomena*
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Biofilms / growth & development*
  • Models, Molecular
  • Protein Folding
  • Protein Multimerization

Substances

  • Amyloid
  • Bacterial Proteins