Genomic insights into cancer-associated aberrant CpG island hypermethylation

Brief Funct Genomics. 2013 May;12(3):174-90. doi: 10.1093/bfgp/els063. Epub 2013 Jan 21.

Abstract

Carcinogenesis is thought to occur through a combination of mutational and epimutational events that disrupt key pathways regulating cellular growth and division. The DNA methylomes of cancer cells can exhibit two striking differences from normal cells; a global reduction of DNA methylation levels and the aberrant hypermethylation of some sequences, particularly CpG islands (CGIs). This aberrant hypermethylation is often invoked as a mechanism causing the transcriptional inactivation of tumour suppressor genes that directly drives the carcinogenic process. Here, we review our current understanding of this phenomenon, focusing on how global analysis of cancer methylomes indicates that most affected CGI genes are already silenced prior to aberrant hypermethylation during cancer development. We also discuss how genome-scale analyses of both normal and cancer cells have refined our understanding of the elusive mechanism(s) that may underpin aberrant CGI hypermethylation.

Keywords: CpG islands; DNA methylation; cancer; epigenetics; epigenomics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • CpG Islands / genetics*
  • DNA Methylation / genetics*
  • Gene Expression Regulation, Neoplastic / genetics
  • Humans
  • Neoplasms / genetics*