Downward causation by information control in micro-organisms

Interface Focus. 2012 Feb 6;2(1):26-41. doi: 10.1098/rsfs.2011.0045. Epub 2011 Sep 29.

Abstract

The concepts of functional equivalence classes and information control in living systems are useful to characterize downward (or top-down) causation by feedback information control in synthetic biology. Herein, we re-analyse published experiments of microbiology and synthetic biology that demonstrate the existence of several classes of functional equivalence in microbial organisms. Classes of functional equivalence from the bacterial operating system, which processes and controls the information encoded in the genome, can readily be interpreted as strong evidence, if not demonstration, of top-down causation (TDC) by information control. The proposed biological framework reveals how this type of causality is put in action in the cellular operating system. Considerations on TDC by information control and adaptive selection can be useful for synthetic biology by delineating the irreducible set of properties that characterizes living systems. Through a 'retro-synthetic' biology approach, these considerations could contribute to identifying the constraints behind the emergence of molecular complexity during the evolution of an ancient RNA/peptide world into a modern DNA/RNA/protein world. In conclusion, we propose TDCs by information control and adaptive selection as the two types of downward causality absolutely necessary for life.

Keywords: RNA evolution; RNA world; convergence; convergent evolution; information selection; molecular complexity.