A single bout of aerobic exercise promotes motor cortical neuroplasticity

J Appl Physiol (1985). 2013 May;114(9):1174-82. doi: 10.1152/japplphysiol.01378.2012. Epub 2013 Mar 14.

Abstract

Regular physical activity is associated with enhanced plasticity in the motor cortex, but the effect of a single session of aerobic exercise on neuroplasticity is unknown. The aim of this study was to compare corticospinal excitability and plasticity in the upper limb cortical representation following a single session of lower limb cycling at either low or moderate intensity, or a control condition. We recruited 25 healthy adults to take part in three experimental sessions. Cortical excitability was examined using transcranial magnetic stimulation to elicit motor-evoked potentials in the right first dorsal interosseus muscle. Levels of serum brain-derived neurotrophic factor and cortisol were assessed throughout the experiments. Following baseline testing, participants cycled on a stationary bike at a workload equivalent to 57% (low intensity, 30 min) or 77% age-predicted maximal heart rate (moderate intensity, 15 min), or a seated control condition. Neuroplasticity within the primary motor cortex was then examined using a continuous theta burst stimulation (cTBS) paradigm. We found that exercise did not alter cortical excitability. Following cTBS, there was a transient inhibition of first dorsal interosseus motor-evoked potentials during control and low-intensity conditions, but this was only significantly different following the low-intensity state. Moderate-intensity exercise alone increased serum cortisol levels, but brain-derived neurotrophic factor levels did not increase across any condition. In summary, low-intensity cycling promoted the neuroplastic response to cTBS within the motor cortex of healthy adults. These findings suggest that light exercise has the potential to enhance the effectiveness of motor learning or recovery following brain damage.

Keywords: exercise; neuroplasticity; transcranial magnetic stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Evoked Potentials, Motor / physiology
  • Exercise / physiology*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Models, Neurological
  • Motor Cortex / physiology*
  • Neuronal Plasticity / physiology*
  • Time Factors
  • Transcranial Magnetic Stimulation
  • Young Adult