Microbial production of fatty acid-derived fuels and chemicals

Curr Opin Biotechnol. 2013 Dec;24(6):1044-53. doi: 10.1016/j.copbio.2013.02.028. Epub 2013 Mar 28.

Abstract

Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biofuels* / supply & distribution
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Fatty Acids / metabolism*
  • Metabolic Engineering / methods*
  • Metabolic Networks and Pathways* / genetics
  • Organic Chemicals / chemistry
  • Organic Chemicals / metabolism*

Substances

  • Biofuels
  • Fatty Acids
  • Organic Chemicals