Spatial population expansion promotes the evolution of cooperation in an experimental Prisoner's Dilemma

Curr Biol. 2013 May 20;23(10):919-23. doi: 10.1016/j.cub.2013.04.026. Epub 2013 May 9.

Abstract

Cooperation is ubiquitous in nature, but explaining its existence remains a central interdisciplinary challenge. Cooperation is most difficult to explain in the Prisoner's Dilemma game, where cooperators always lose in direct competition with defectors despite increasing mean fitness. Here we demonstrate how spatial population expansion, a widespread natural phenomenon, promotes the evolution of cooperation. We engineer an experimental Prisoner's Dilemma game in the budding yeast Saccharomyces cerevisiae to show that, despite losing to defectors in nonexpanding conditions, cooperators increase in frequency in spatially expanding populations. Fluorescently labeled colonies show genetic demixing of cooperators and defectors, followed by increase in cooperator frequency as cooperator sectors overtake neighboring defector sectors. Together with lattice-based spatial simulations, our results suggest that spatial population expansion drives the evolution of cooperation by (1) increasing positive genetic assortment at population frontiers and (2) selecting for phenotypes maximizing local deme productivity. Spatial expansion thus creates a selective force whereby cooperator-enriched demes overtake neighboring defector-enriched demes in a "survival of the fastest." We conclude that colony growth alone can promote cooperation and prevent defection in microbes. Our results extend to other species with spatially restricted dispersal undergoing range expansion, including pathogens, invasive species, and humans.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cooperative Behavior*
  • Game Theory*
  • Saccharomyces cerevisiae / physiology*