Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia

PLoS Biol. 2013;11(5):e1001560. doi: 10.1371/journal.pbio.1001560. Epub 2013 May 14.

Abstract

Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Brassicaceae / classification
  • Brassicaceae / genetics*
  • Evolution, Molecular*
  • Gene Expression Regulation, Plant
  • Humans
  • Molecular Sequence Data
  • Phylogeny
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Protein Kinases / genetics
  • Protein Kinases / metabolism
  • Sequence Alignment

Substances

  • Plant Proteins
  • Protein Kinases
  • S-receptor kinase

Grants and funding

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) through a Discovery Grant entitled ‘The Evolution of Genetic Systems’, by an NSERC Strategic Network Grant to the Canadian Pollination Initiative, and by Genome Canada and Genome Quebec through their funding of Value-directed Evolutionary Genomics Initiative, led by Thomas Bureau and Stephen Wright. DJS thanks Université Lille 1 for a visiting grant to the GEPV lab in Lille. The work of XV is supported by the French Agence Nationale de la Recherche (ANR-11-BSV7- 013-03). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.