Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses

Environ Microbiol Rep. 2011 Dec;3(6):717-26. doi: 10.1111/j.1758-2229.2011.00290.x. Epub 2011 Sep 29.

Abstract

Ammonia-oxidizing bacteria and ammonia-oxidizing archaea are commonly found together in soils, yet the factors influencing their relative distribution and activity remain unclear. We examined archaeal and bacterial amoA gene distribution, and used a novel bioassay to assess archaeal and bacterial contributions to nitrification potentials in soils spanning a range of land uses (forest, pasture, cultivated and long-term fallowed cropland) along a 10 km transect. The assay, which quantifies the extent to which acetylene-inactivated soil nitrification potential recovers (RNP) in the presence of bacterial protein synthesis inhibitors, indicated a significant archaeal contribution to the nitrification potentials of the pasture and long-term fallowed soils. Archaeal amoA gene abundance did not vary significantly among the soils, but bacterial amoA gene abundance did, resulting in archaeal : bacterial amoA abundance ratios ranging from 1.1 ± 0.8 in cultivated soils to 396 ± 176 in pasture soils. Both archaeal and bacterial amoA gene compositions were heterogeneous across the landscape, but differed in their patterns of variability. Archaeal amoA gene distributions were distinct among each of the three main land-use types: forest, pasture and cropland soils. In contrast, bacterial amoA gene composition was distinct in forest and in cultivated cropland, while pasture and long-term fallowed cropland soils were similar. In both pasture and long-term fallowed cropland soils, one phylotype of Nitrosospira cluster 3a was highly abundant. This distinct bacterial amoA gene fingerprint correlated with significant contributions of archaea to RNP of both soils, despite differences in archaeal amoA gene composition between the pasture and fallowed soils. This observation suggests that the factors driving the development of ammonia-oxidizing bacteria community composition might influence the extent of archaeal contribution to soil nitrification.