Evolution of discrete phenotypes from continuous norms of reaction

Am Nat. 2013 Jul;182(1):13-27. doi: 10.1086/670613.

Abstract

Discrete phenotypic variation often involves threshold expression of a trait with polygenic inheritance. How such discrete polyphenisms evolve starting from continuously varying phenotypes has received little theoretical attention. We model the evolution of sigmoid norms of reaction in response to variation in an underlying trait or in a continuous environment to identify conditions for the evolution of discontinuity. For traits with expression depending on a randomly varying underlying factor, such as developmental noise, polyphenism is unstable under constant phenotypic selection for two selective peaks, and reaction norm evolution results in a phenotypic distribution concentrated at only one peak. But with frequency-dependent selection between two adaptive peaks, a steep threshold maintaining polyphenism can evolve. For inducible plastic traits with expression conditioned on an environmental variable that also affects phenotypic selection, the steepness of the evolved reaction norm depends both on the differentiation of the environment in time or space and on its predictability between development and selection. Together with recent measurements of genetic variance of threshold steepness, these predictions suggest that quasi-discrete phenotypic variation may often evolve from continuous norms of reactions rather than being an intrinsic property of development.

MeSH terms

  • Biological Evolution*
  • Environment*
  • Genetic Variation
  • Models, Genetic
  • Multifactorial Inheritance*
  • Phenotype*
  • Selection, Genetic