Adaptive radiation of chemosymbiotic deep-sea mussels

Proc Biol Sci. 2013 Sep 18;280(1770):20131243. doi: 10.1098/rspb.2013.1243. Print 2013 Nov 7.

Abstract

Adaptive radiations present fascinating opportunities for studying the evolutionary process. Most cases come from isolated lakes or islands, where unoccupied ecological space is filled through novel adaptations. Here, we describe an unusual example of an adaptive radiation: symbiotic mussels that colonized island-like chemosynthetic environments such as hydrothermal vents, cold seeps and sunken organic substrates on the vast deep-sea floor. Our time-calibrated molecular phylogeny suggests that the group originated and acquired sulfur-oxidizing symbionts in the Late Cretaceous, possibly while inhabiting organic substrates and long before its major radiation in the Middle Eocene to Early Oligocene. The first appearance of intracellular and methanotrophic symbionts was detected only after this major radiation. Thus, contrary to expectations, the major radiation may have not been triggered by the evolution of novel types of symbioses. We hypothesize that environmental factors, such as increased habitat availability and/or increased dispersal capabilities, sparked the radiation. Intracellular and methanotrophic symbionts were acquired in several independent lineages and marked the onset of a second wave of diversification at vents and seeps. Changes in habitat type resulted in adaptive trends in shell lengths (related to the availability of space and energy, and physiological trade-offs) and in the successive colonization of greater water depths.

Keywords: adaptive radiation; cold seep; hydrothermal vent; organic falls; phylogenetics; symbiosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Biological Evolution*
  • Body Size
  • Cell Nucleus / genetics
  • DNA, Mitochondrial / genetics
  • DNA, Mitochondrial / metabolism
  • Ecosystem
  • Evolution, Molecular
  • Genetic Speciation*
  • Molecular Sequence Data
  • Mytilidae / cytology
  • Mytilidae / genetics
  • Mytilidae / physiology*
  • Phylogeny
  • Polymerase Chain Reaction
  • Sequence Analysis, DNA
  • Symbiosis*

Substances

  • DNA, Mitochondrial

Associated data

  • GENBANK/HF545021
  • GENBANK/HF545022
  • GENBANK/HF545023
  • GENBANK/HF545024
  • GENBANK/HF545025
  • GENBANK/HF545026
  • GENBANK/HF545027
  • GENBANK/HF545028
  • GENBANK/HF545029
  • GENBANK/HF545030
  • GENBANK/HF545031
  • GENBANK/HF545032
  • GENBANK/HF545033
  • GENBANK/HF545034
  • GENBANK/HF545035
  • GENBANK/HF545036
  • GENBANK/HF545037
  • GENBANK/HF545038
  • GENBANK/HF545039
  • GENBANK/HF545040
  • GENBANK/HF545041
  • GENBANK/HF545042
  • GENBANK/HF545043
  • GENBANK/HF545044
  • GENBANK/HF545045
  • GENBANK/HF545046
  • GENBANK/HF545047
  • GENBANK/HF545048
  • GENBANK/HF545049
  • GENBANK/HF545050
  • GENBANK/HF545051
  • GENBANK/HF545052
  • GENBANK/HF545053
  • GENBANK/HF545054
  • GENBANK/HF545055
  • GENBANK/HF545056
  • GENBANK/HF545057
  • GENBANK/HF545058
  • GENBANK/HF545059
  • GENBANK/HF545060
  • GENBANK/HF545061
  • GENBANK/HF545062
  • GENBANK/HF545063
  • GENBANK/HF545064
  • GENBANK/HF545065
  • GENBANK/HF545066
  • GENBANK/HF545067
  • GENBANK/HF545068
  • GENBANK/HF545069
  • GENBANK/HF545070
  • GENBANK/HF545071
  • GENBANK/HF545072
  • GENBANK/HF545073
  • GENBANK/HF545074
  • GENBANK/HF545075
  • GENBANK/HF545076
  • GENBANK/HF545077
  • GENBANK/HF545078
  • GENBANK/HF545079
  • GENBANK/HF545080
  • GENBANK/HF545081
  • GENBANK/HF545082
  • GENBANK/HF545083
  • GENBANK/HF545084
  • GENBANK/HF545085
  • GENBANK/HF545086
  • GENBANK/HF545087
  • GENBANK/HF545088
  • GENBANK/HF545089
  • GENBANK/HF545090
  • GENBANK/HF545091
  • GENBANK/HF545092
  • GENBANK/HF545093
  • GENBANK/HF545094
  • GENBANK/HF545095
  • GENBANK/HF545096
  • GENBANK/HF545097
  • GENBANK/HF545098
  • GENBANK/HF545099