Conceptual learning by miniature brains

Proc Biol Sci. 2013 Oct 9;280(1772):20131907. doi: 10.1098/rspb.2013.1907. Print 2013 Dec 7.

Abstract

Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as 'same', 'different', 'larger than', 'better than', among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as 'same', 'different', 'above/below of' or 'left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations.

Keywords: Apis mellifera; concept learning; honeybee; insect cognition; visual cognition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bees / anatomy & histology
  • Bees / physiology*
  • Brain / anatomy & histology
  • Brain / physiology
  • Learning
  • Visual Perception