Dimensionality and size scaling of coordinated Ca(2+) dynamics in MIN6 β-cell clusters

Biophys J. 2014 Jan 7;106(1):299-309. doi: 10.1016/j.bpj.2013.11.026.

Abstract

Pancreatic islets of Langerhans regulate blood glucose homeostasis by the secretion of the hormone insulin. Like many neuroendocrine cells, the coupling between insulin-secreting β-cells in the islet is critical for the dynamics of hormone secretion. We have examined how this coupling architecture regulates the electrical dynamics that underlie insulin secretion by utilizing a microwell-based aggregation method to generate clusters of a β-cell line with defined sizes and dimensions. We measured the dynamics of free-calcium activity ([Ca(2+)]i) and insulin secretion and compared these measurements with a percolating network model. We observed that the coupling dimension was critical for regulating [Ca(2+)]i dynamics and insulin secretion. Three-dimensional coupling led to size-invariant suppression of [Ca(2+)]i at low glucose and robust synchronized [Ca(2+)]i oscillations at elevated glucose, whereas two-dimensional coupling showed poor suppression and less robust synchronization, with significant size-dependence. The dimension- and size-scaling of [Ca(2+)]i at high and low glucose could be accurately described with the percolating network model, using similar network connectivity. As such this could explain the fundamentally different behavior and size-scaling observed under each coupling dimension. This study highlights the dependence of proper β-cell function on the coupling architecture that will be important for developing therapeutic treatments for diabetes such as islet transplantation techniques. Furthermore, this will be vital to gain a better understanding of the general features by which cellular interactions regulate coupled multicellular systems.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Signaling*
  • Cell Line, Tumor
  • Exocytosis
  • Glucose / metabolism
  • Insulin / metabolism
  • Insulin-Secreting Cells / metabolism*
  • Mice
  • Models, Biological

Substances

  • Insulin
  • Glucose
  • Calcium