Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors

Cell. 2014 Jan 30;156(3):577-89. doi: 10.1016/j.cell.2013.12.027.

Abstract

Auxin regulates numerous plant developmental processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs), yet the mechanistic basis for generating specificity in auxin response is unknown. Here, we address this question by solving high-resolution crystal structures of the pivotal Arabidopsis developmental regulator ARF5/MONOPTEROS (MP), its divergent paralog ARF1, and a complex of ARF1 and a generic auxin response DNA element (AuxRE). We show that ARF DNA-binding domains also homodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and we discover that monomers have the same intrinsic specificity. ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites. Our data identify the DNA-binding domain as an ARF dimerization domain, suggest that ARF dimers bind complex sites as molecular calipers with ARF-specific spacing preference, and provide an atomic-scale mechanistic model for specificity in auxin response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / chemistry*
  • Arabidopsis Proteins / metabolism*
  • Crystallography, X-Ray
  • DNA / chemistry
  • DNA / metabolism*
  • DNA-Binding Proteins / chemistry*
  • DNA-Binding Proteins / metabolism*
  • Dimerization
  • Indoleacetic Acids / metabolism*
  • Models, Molecular
  • Molecular Sequence Data
  • Phylogeny
  • Protein Structure, Tertiary
  • Sequence Alignment
  • Transcription Factors / chemistry*
  • Transcription Factors / metabolism*

Substances

  • ARF1 protein, Arabidopsis
  • Arabidopsis Proteins
  • DNA-Binding Proteins
  • Indoleacetic Acids
  • MONOPTEROS protein, Arabidopsis
  • Transcription Factors
  • DNA

Associated data

  • PDB/4LDU
  • PDB/4LDV
  • PDB/4LDW
  • PDB/4LDX
  • PDB/4LDY