A splicing-dependent transcriptional checkpoint associated with prespliceosome formation

Mol Cell. 2014 Mar 6;53(5):779-90. doi: 10.1016/j.molcel.2014.01.017. Epub 2014 Feb 20.

Abstract

There is good evidence for functional interactions between splicing and transcription in eukaryotes, but how and why these processes are coupled remain unknown. Prp5 protein (Prp5p) is an RNA-stimulated adenosine triphosphatase (ATPase) required for prespliceosome formation in yeast. We demonstrate through in vivo RNA labeling that, in addition to a splicing defect, the prp5-1 mutation causes a defect in the transcription of intron-containing genes. We present chromatin immunoprecipitation evidence for a transcriptional elongation defect in which RNA polymerase that is phosphorylated at Ser5 of the largest subunit's heptad repeat accumulates over introns and that this defect requires Cus2 protein. A similar accumulation of polymerase was observed when prespliceosome formation was blocked by a mutation in U2 snRNA. These results indicate the existence of a transcriptional elongation checkpoint that is associated with prespliceosome formation during cotranscriptional spliceosome assembly. We propose a role for Cus2p as a potential checkpoint factor in transcription.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Chromatin Immunoprecipitation
  • DEAD-box RNA Helicases / metabolism
  • Exons
  • Genes, Fungal
  • Introns
  • Mutation
  • Phosphorylation
  • RNA Polymerase II / metabolism
  • RNA Precursors / metabolism
  • RNA Splicing
  • RNA, Small Nuclear / metabolism*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Spliceosomes / genetics
  • Spliceosomes / metabolism*
  • Transcription, Genetic*

Substances

  • RNA Precursors
  • RNA, Small Nuclear
  • Saccharomyces cerevisiae Proteins
  • U2 small nuclear RNA
  • Adenosine Triphosphate
  • RNA Polymerase II
  • DEAD-box RNA Helicases

Associated data

  • GEO/GSE53647