The LexA regulated genes of the Clostridium difficile

BMC Microbiol. 2014 Apr 8:14:88. doi: 10.1186/1471-2180-14-88.

Abstract

Background: The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the in silico LexA regulon in Clostridium difficile, an important human pathogen.

Results: We grouped thirty C. difficile strains from different ribotypes and toxinotypes into three clusters according to lexA gene/protein variability. We applied in silico analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in C. difficile. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: lexA, recA, ruvCA and uvrBA, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance.

Conclusions: Results presented here suggest that in C. difficile LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our in vitro results indicate that in C. difficile inactivation of LexA repressor depends on repressor`s dissociation from the operators. We report that the repressor`s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in C. difficile.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Clostridioides difficile / genetics*
  • Computer Simulation
  • DNA, Bacterial / genetics
  • DNA, Bacterial / metabolism
  • Gene Expression Regulation, Bacterial*
  • Regulon*
  • Serine Endopeptidases / genetics
  • Serine Endopeptidases / metabolism*
  • Surface Plasmon Resonance

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • LexA protein, Bacteria
  • Serine Endopeptidases