The coding and noncoding architecture of the Caulobacter crescentus genome

PLoS Genet. 2014 Jul 31;10(7):e1004463. doi: 10.1371/journal.pgen.1004463. eCollection 2014 Jul.

Abstract

Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5'-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5'-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Caulobacter crescentus / genetics*
  • Cell Division / genetics
  • Genome*
  • High-Throughput Nucleotide Sequencing*
  • Molecular Sequence Annotation*
  • Open Reading Frames
  • Protein Biosynthesis
  • Ribosomes / genetics