Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue

J Appl Physiol (1985). 2015 Mar 15;118(6):662-74. doi: 10.1152/japplphysiol.00705.2013. Epub 2015 Jan 8.

Abstract

We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials.

Keywords: action potential; calcium; excitability; fiber-type; muscle fatigue; potassium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Calcium / metabolism*
  • Female
  • Male
  • Mice
  • Muscle Contraction / physiology
  • Muscle Fatigue / physiology*
  • Muscle Fibers, Skeletal / metabolism
  • Muscle Fibers, Skeletal / physiology*
  • Potassium / metabolism*
  • Sarcolemma / metabolism
  • Sarcolemma / physiology

Substances

  • Potassium
  • Calcium