XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions

Mol Plant. 2015 May;8(5):796-813. doi: 10.1016/j.molp.2015.01.017. Epub 2015 Jan 28.

Abstract

In Arabidopsis thaliana, multiple genes involved in shoot apical meristem (SAM) transitions have been characterized, but the mechanisms required for the dynamic attainment of vegetative, inflorescence, and floral meristem (VM, IM, FM) cell fates during SAM transitions are not well understood. Here we show that a MADS-box gene, XAANTAL2 (XAL2/AGL14), is necessary and sufficient to induce flowering, and its regulation is important in FM maintenance and determinacy. xal2 mutants are late flowering, particularly under short-day (SD) condition, while XAL2 overexpressing plants are early flowering, but their flowers have vegetative traits. Interestingly, inflorescences of the latter plants have higher expression levels of LFY, AP1, and TFL1 than wild-type plants. In addition we found that XAL2 is able to bind the TFL1 regulatory regions. On the other hand, the basipetal carpels of the 35S::XAL2 lines lose determinacy and maintain high levels of WUS expression under SD condition. To provide a mechanistic explanation for the complex roles of XAL2 in SAM transitions and the apparently paradoxical phenotypes of XAL2 and other MADS-box (SOC1, AGL24) overexpressors, we conducted dynamic gene regulatory network (GRN) and epigenetic landscape modeling. We uncovered a GRN module that underlies VM, IM, and FM gene configurations and transition patterns in wild-type plants as well as loss and gain of function lines characterized here and previously. Our approach thus provides a novel mechanistic framework for understanding the complex basis of SAM development.

Keywords: MADS-box; SAM transitions; TFL1; XAL2/AGL14; epigenetic landscape modeling; floral reversion; gene regulatory networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Flowers / genetics
  • Flowers / growth & development
  • Flowers / metabolism
  • Gene Expression Regulation, Developmental*
  • Gene Expression Regulation, Plant
  • Gene Regulatory Networks*
  • MADS Domain Proteins / genetics
  • MADS Domain Proteins / metabolism*
  • Meristem / genetics
  • Meristem / growth & development
  • Meristem / metabolism*
  • Plant Shoots / genetics
  • Plant Shoots / growth & development*
  • Plant Shoots / metabolism

Substances

  • AGL24 protein, Arabidopsis
  • Arabidopsis Proteins
  • MADS Domain Proteins
  • XAANTAL2 protein, Arabidopsis