Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo

Cell. 2015 Mar 12;160(6):1145-58. doi: 10.1016/j.cell.2015.01.054.

Abstract

Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Chromatin / chemistry*
  • Chromatin / metabolism
  • Computer Simulation
  • Embryonic Stem Cells / chemistry
  • Embryonic Stem Cells / metabolism
  • Genome-Wide Association Study
  • Histones / metabolism
  • Humans
  • Interphase
  • Mice
  • Mutation
  • Nucleosomes / chemistry*
  • Nucleosomes / metabolism
  • Nucleosomes / ultrastructure*
  • Pluripotent Stem Cells / chemistry
  • Pluripotent Stem Cells / metabolism
  • RNA Polymerase II / metabolism

Substances

  • Chromatin
  • Histones
  • Nucleosomes
  • RNA Polymerase II