Atomic-level mechanisms for phospholamban regulation of the calcium pump

Biophys J. 2015 Apr 7;108(7):1697-1708. doi: 10.1016/j.bpj.2015.03.004.

Abstract

We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K(+) and 3 mM Mg(2+). Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K(+) ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K(+) in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H(+)771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca(2+)-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Calcium / metabolism
  • Calcium-Binding Proteins / chemistry*
  • Calcium-Binding Proteins / metabolism
  • Molecular Dynamics Simulation*
  • Molecular Sequence Data
  • Potassium / metabolism
  • Protein Binding
  • Rabbits
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / chemistry*
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism

Substances

  • Calcium-Binding Proteins
  • phospholamban
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Potassium
  • Calcium