Systems biology of host-microbe metabolomics

Wiley Interdiscip Rev Syst Biol Med. 2015 Jul-Aug;7(4):195-219. doi: 10.1002/wsbm.1301. Epub 2015 Apr 30.

Abstract

The human gut microbiota performs essential functions for host and well-being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health-relevant metabolites being considered 'mammalian-microbial co-metabolites'. To systematically investigate this complex host-microbial co-metabolism, a systems biology approach integrating high-throughput data and computational network models is required. Here, we review established top-down and bottom-up systems biology approaches that have successfully elucidated relationships between gut microbiota-derived metabolites and host health and disease. We focus particularly on the constraint-based modeling and analysis approach, which enables the prediction of mechanisms behind metabolic host-microbe interactions on the molecular level. We illustrate that constraint-based models are a useful tool for the contextualization of metabolomic measurements and can further our insight into host-microbe interactions, yielding, e.g., in potential novel drugs and biomarkers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Body Fluids / metabolism
  • Gastrointestinal Tract / metabolism
  • Gastrointestinal Tract / microbiology
  • Host-Pathogen Interactions
  • Humans
  • Metabolome
  • Metabolomics*
  • Microbiota
  • Models, Biological*