Membrane tension and cytoskeleton organization in cell motility

J Phys Condens Matter. 2015 Jul 15;27(27):273103. doi: 10.1088/0953-8984/27/27/273103. Epub 2015 Jun 10.

Abstract

Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Actins / metabolism*
  • Animals
  • Cell Membrane / chemistry*
  • Cell Membrane / metabolism*
  • Cell Movement / physiology*
  • Cytoskeleton / chemistry*
  • Cytoskeleton / metabolism*
  • Humans

Substances

  • Actins