BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon-β Responses

PLoS Pathog. 2015 Jun 29;11(6):e1005030. doi: 10.1371/journal.ppat.1005030. eCollection 2015 Jun.

Abstract

The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1β, IL-18 or interferon β (IFN-β). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1β generation. IFI16 also induces IFN-β during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1β production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-β production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16, subsequent assembly and cytoplasmic distribution of IFI16-inflammasomes leading into IL-1β formation and the induction of IFN-β via cytoplasmic signaling through IFI16-STING, TBK1 and IRF3.

Publication types

  • Research Support, N.I.H., Extramural
  • Retracted Publication

MeSH terms

  • BRCA1 Protein / metabolism*
  • Cell Line
  • DNA, Viral / genetics*
  • DNA-Binding Proteins / metabolism
  • Herpesvirus 1, Human / genetics*
  • Humans
  • Inflammasomes / metabolism*
  • Interferon-beta / metabolism*
  • Nuclear Proteins / metabolism*
  • Phosphoproteins / metabolism*
  • Signal Transduction / genetics

Substances

  • BRCA1 Protein
  • BRCA1 protein, human
  • DNA, Viral
  • DNA-Binding Proteins
  • Inflammasomes
  • Nuclear Proteins
  • Phosphoproteins
  • IFI16 protein, human
  • Interferon-beta