Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex

PLoS Biol. 2015 Aug 7;13(8):e1002217. doi: 10.1371/journal.pbio.1002217. eCollection 2015 Aug.

Abstract

The evolutionary expansion of the neocortex in mammals has been linked to enlargement of the subventricular zone (SVZ) and increased proliferative capacity of basal progenitors (BPs), notably basal radial glia (bRG). The transcription factor Pax6 is known to be highly expressed in primate, but not mouse, BPs. Here, we demonstrate that sustaining Pax6 expression selectively in BP-genic apical radial glia (aRG) and their BP progeny of embryonic mouse neocortex suffices to induce primate-like progenitor behaviour. Specifically, we conditionally expressed Pax6 by in utero electroporation using a novel, Tis21-CreERT2 mouse line. This expression altered aRG cleavage plane orientation to promote bRG generation, increased cell-cycle re-entry of BPs, and ultimately increased upper-layer neuron production. Upper-layer neuron production was also increased in double-transgenic mouse embryos with sustained Pax6 expression in the neurogenic lineage. Strikingly, increased BPs existed not only in the SVZ but also in the intermediate zone of the neocortex of these double-transgenic mouse embryos. In mutant mouse embryos lacking functional Pax6, the proportion of bRG among BPs was reduced. Our data identify specific Pax6 effects in BPs and imply that sustaining this Pax6 function in BPs could be a key aspect of SVZ enlargement and, consequently, the evolutionary expansion of the neocortex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution
  • Eye Proteins / metabolism*
  • Female
  • Fluorescent Antibody Technique
  • Homeodomain Proteins / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Neocortex / cytology*
  • Neocortex / embryology
  • Neocortex / metabolism
  • Neural Stem Cells / metabolism*
  • Neuroglia / metabolism*
  • Neurons / metabolism
  • PAX6 Transcription Factor
  • Paired Box Transcription Factors / metabolism*
  • Primates
  • Repressor Proteins / metabolism*

Substances

  • Eye Proteins
  • Homeodomain Proteins
  • PAX6 Transcription Factor
  • Paired Box Transcription Factors
  • Pax6 protein, mouse
  • Repressor Proteins

Grants and funding

WBH was supported by grants from the DFG (SFB 655, A2) and the ERC (250197), by the DFG-funded Center for Regenerative Therapies Dresden, and by the Fonds der Chemischen Industrie. FKW was a member of the International Max Planck Research School for Cell, Developmental and Systems Biology and a doctoral student at the Technische Universität Dresden. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.