Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion

Cell Cycle. 2015;14(20):3242-7. doi: 10.1080/15384101.2015.1084448.

Abstract

Mitochondria are organelles that orchestrate a plethora of fundamental cellular functions that have been associated with various steps of tumor progression. However, we currently lack a mechanistic understanding of how mitochondrial dynamics, which reflects the organelles' exquisite heterogeneity in shape and spatial distribution, affects tumorigenesis. In a recent study, we uncovered a surprising new role of mitochondrial dynamics in response to PI3K therapy. We found that re-activation of Akt/mTOR signaling in tumor cells exposed to small molecule PI3K antagonists currently in the clinic triggered the transport of energetically active, elongated mitochondria to the cortical cytoskeleton of tumor cells. In turn, these repositioned mitochondria supported increased lamellipodia dynamics, faster turnover of focal adhesion complexes, heightened velocity and distance of random cell migration and increased tumor cell invasion. In this Extra View, we discuss the mechanistic basis of this paradoxical response to PI3K antagonists and propose possible strategies to disable mitochondrial adaptation.

Keywords: Hsp90; PI3K; drug resistance; focal adhesion; metastasis; mitochondria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Cell Line, Tumor
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Mitochondrial Dynamics / drug effects
  • Mitochondrial Dynamics / physiology*
  • Neoplasm Invasiveness / pathology
  • Neoplasm Invasiveness / prevention & control
  • Neoplasms / drug therapy
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt