Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria

Nature. 2015 Oct 22;526(7574):587-90. doi: 10.1038/nature15733.

Abstract

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Archaea / metabolism*
  • Bacteria / metabolism*
  • Cytochromes / metabolism
  • Electron Transport
  • Fimbriae, Bacterial / metabolism
  • Geologic Sediments / microbiology
  • Heme / metabolism
  • Hydrogen / metabolism
  • Hydrothermal Vents / microbiology
  • Methane / metabolism*
  • Microbiota / physiology
  • Molecular Sequence Data
  • Oceans and Seas
  • Sulfates / metabolism
  • Symbiosis
  • Temperature

Substances

  • Cytochromes
  • Sulfates
  • Heme
  • Hydrogen
  • Methane

Associated data

  • BioProject/PRJNA276404
  • BioProject/PRJNA286178
  • GENBANK/KT152859
  • GENBANK/KT152860
  • GENBANK/KT152861
  • GENBANK/KT152862
  • GENBANK/KT152863
  • GENBANK/KT152864
  • GENBANK/KT152865
  • GENBANK/KT152866
  • GENBANK/KT152867
  • GENBANK/KT152868
  • GENBANK/KT152869
  • GENBANK/KT152870
  • GENBANK/KT152871
  • GENBANK/KT152872
  • GENBANK/KT152873
  • GENBANK/KT152874
  • GENBANK/KT152875
  • GENBANK/KT152876
  • GENBANK/KT152877
  • GENBANK/KT152878
  • GENBANK/KT152879
  • GENBANK/KT152880
  • GENBANK/KT152881
  • GENBANK/KT152882
  • GENBANK/KT152883
  • GENBANK/KT152884
  • GENBANK/KT152885
  • GENBANK/KT152886
  • GENBANK/KT152887
  • GENBANK/KT759143
  • GENBANK/KT759144
  • GENBANK/KT759145
  • GENBANK/KT759146
  • GENBANK/KT759147
  • GENBANK/KT795302
  • GENBANK/KT795303
  • GENBANK/KT795304
  • GENBANK/KT795305
  • GENBANK/KT795306
  • GENBANK/KT795307
  • GENBANK/KT795308
  • GENBANK/KT795309
  • GENBANK/KT795310
  • GENBANK/KT795311
  • GENBANK/KT795312
  • GENBANK/KT795313
  • GENBANK/KT795314
  • GENBANK/KT795315
  • GENBANK/KT795316
  • GENBANK/KT795317
  • GENBANK/KT795318
  • GENBANK/KT795319
  • GENBANK/KT795320
  • GENBANK/KT795321
  • GENBANK/KT795322
  • GENBANK/KT795323