Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.

Abstract

Diabetes increases the reabsorption of Na(+) (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption [Formula: see text] along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising [Formula: see text] by 5-12% in the cortex and medulla. Diabetes increases overall TNa and [Formula: see text] by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers [Formula: see text] in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises [Formula: see text] in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase [Formula: see text] by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces [Formula: see text] by 33% in S3 segments, and raises [Formula: see text] by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical [Formula: see text] and raises medullary [Formula: see text], particularly in S3 segments.

Keywords: diabetes; glucose; metabolism; sodium transport.

MeSH terms

  • Animals
  • Diabetic Nephropathies / metabolism*
  • Glomerular Filtration Rate / physiology
  • Models, Biological*
  • Nephrons / metabolism*
  • Oxygen Consumption / physiology*
  • Rats
  • Sodium-Glucose Transporter 2 / metabolism*
  • Sodium-Glucose Transporter 2 Inhibitors

Substances

  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors