Human podocyte depletion in association with older age and hypertension

Am J Physiol Renal Physiol. 2016 Apr 1;310(7):F656-F668. doi: 10.1152/ajprenal.00497.2015. Epub 2016 Jan 20.

Abstract

Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease.

Keywords: hypertension; older age; podocyte depletion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Aged
  • Aging / pathology*
  • Cell Count
  • Humans
  • Hypertension / pathology*
  • Kidney Glomerulus / pathology*
  • Male
  • Middle Aged
  • Podocytes / pathology*
  • Young Adult