Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

Mol Biol Evol. 2016 May;33(5):1308-16. doi: 10.1093/molbev/msw014. Epub 2016 Jan 25.

Abstract

Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species.

Keywords: copy-number variation; natural selection.; population genetics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / genetics*
  • Animals
  • Biological Evolution
  • DNA Copy Number Variations*
  • Drosophila melanogaster / genetics*
  • Evolution, Molecular
  • Female
  • Gene Frequency
  • Genetic Variation
  • Genetics, Population / methods
  • Phylogeny
  • Phylogeography / methods
  • Polymorphism, Single Nucleotide
  • Selection, Genetic